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In recent years new insights and algorithms have been obtained for the classical, deterministic vehicle routing problem as well as for
natural stochastic and dynamic variations of it. These new developments are based on theoretical analysis, combine probabilistic and
combinatorial modeling, and lead to new algorithms that produce near-optimal solutions, and a deeper understanding of uncertainty
issues in vehicle routing. In this paper, we survey these new developments with an emphasis on the insights gained and on the

algorithms proposed.

n recent years, many service suppliers and distributors

have recognized the importance of designing efficient
distribution strategies to improve the level of customer’s
service and reduce freight transportation costs, which to-
taled more than 100 billion dollars in the United States in
1990. In a typical distribution system, vehicles (e.g., trucks
or school buses) provide delivery, customer pick-up, or
repair and maintenance services to customers that are geo-
graphically dispersed in a given area. In most applications
(the distribution of soft drinks, beer, gasoline and pharma-
ceuticals, or the pick-up and delivery of students by school
buses just to name a few), a common objective is to find a
set of routes for the vehicles which satisfies a variety of
constraints and so as to minimize the total fleet operating
cost. The problem of minimizing total cost has traditionally
been called the vehicle routing problem (VRP). In other
applications (especially in repair and service contexts), it is
important to minimize the total time the customers spend
waiting to be served.

In the last decade, new insights and algorithms have
been obtained for the classical deterministic vehicle rout-
ing problem as well as for natural stochastic and dynamic
variations of it. These new developments are based on
theoretical analysis, combine probabilistic and combinato-
rial modeling, and lead to new and effective algorithms
and a deeper understanding of uncertainty issues in vehicle
routing. In this paper, we survey these new developments
with an emphasis on the insights gained and on the algo-
rithms proposed.

The first set of results we survey (Sections 1-5) describes
new near-optimal algorithms for VRPs. The complexity
and wide applicability of the VRP have motivated re-
searchers to develop heuristic algorithms (or simply heu-
ristics) for its solution. Consequently, the problem has
been analyzed extensively in contemporary journals; an ex-
cellent survey of the literature may be found in Fisher
(1995). Traditionally, these heuristics are analyzed empiri-
cally, that is, the performance of a specific heuristic is
evaluated on a set of standard test problems. As observed in
Fisher a common limitation of this approach is the lack of
robustness; a heuristic algorithm that works well on a set
of standard test problems does not necessarily perform
well on any particular application. The heuristic is then
“patched up” to fix the troublesome cases, leading to an
algorithm with growing complexity (see, Fisher). After
considerable effort, a procedure is created that works well
for the situation at hand (Fisher). Unfortunately, the re-
sulting algorithm is usually extremely sensitive to changes
in the data, and may perform poorly when transformed to
other environments.

To overcome this difficulty, an in-depth analysis of some
VRPs has been carried out that makes it possible to under-
stand the underlying structure of these problems as a first
step toward designing algorithms that can efficiently solve
large-scale problems. This has led to the development of
new algorithms that are more robust, i.e., algorithms that
are independent of the specific environment and the vari-
ability in the data, because they are designed to handle a
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general situation. In addition, this approach enables us to
better understand models that integrate vehicle routing
with other issues important to the firm, such as integrating
inventory control and vehicle routing or design problems
associated with distribution systems.

The second set of results we survey (Sections 6 and 7)
describes new models and algorithms for VRPs in which
uncertainty (in customer’s demands, location or arrival
time of a customer request for service) plays a major role.
While the classical view of the VRP is static and determin-
istic, in many of the practical applications in which VRPs
arise (e.g., distribution, inventory resupply, mobile repair),
there are significant stochastic and dynamic components to
the problem. Indeed, in many real-life logistics systems,
demands arrive randomly in time, have a random size, and
thus routing is a continuous process of collecting demands,
forming tours, and dispatching vehicles.

To analyze problems of this type, new models have been
proposed for VRPs under uncertainty. The analysis of
these stochastic and dynamic VRPs provides structural in-
sight into the effects on performance of traffic intensity,
on-site service characteristics, the number, speed and ca-
pacity of vehicles employed, service region size, and the
distribution of customer locations.

The discussion in this paper remains at an intuitive level;
the interested reader is referred to Federgruen and
Simchi-Levi (1995) and Powell, Jaillet and Odoni (1995)
for proofs of some of the results presented below. The
paper is organized as follows. In Sections 1 and 2 we re-
view new algorithms for different versions of the capaci-
tated VRP and analyze their performance from a worst
and average perspective. In Sections 3 and 4 we extend
some of the results to the VRP with capacity and time
window constraints. Section 5 shows how the insights ob-
tained from the previous analyses can be applied to gen-
eral distribution systems. Section 6 presents a new
approach based on a priori optimization for VRPs with
stochastic but static customer demand. Section 7 presents
a new approach based on combinatorial optimization and
queueing theory for VRPs with stochastic and dynamic
demand. The final section summarizes the most important
points we are making.

1. VRP WITH EQUAL DEMANDS

Perhaps the simplest model for VRP that leads to impor-
tant insights is defined as follows: A set of customers has
to be served by a fleet of identical vehicles of fixed capacity
g. The vehicles are initially located at a given depot. Asso-
ciated with each customer is its demand which is the num-
ber of items that has to be delivered to that customer. The
vehicle capacity specifies an upper bound on the number
of items that can be delivered by a single vehicle. The
objective is to find a set of routes for the vehicles of mini-
mal total length. Each route begins at the depot, visits a
subset of the customers, and returns to the depot without
violating the capacity constraint.
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If customers’ demands are identical, they can be as-
sumed, without loss of generality, to be equal to one. In
that case, the capacity constraint states that the number of
customers visited by a single vehicle cannot exceed g. This
model is called the equal demand model.

The capacitated VRP with equal demands can hardly be
considered a practical model. It has been, however, the
subject of intensive analysis in the last five years. This is
primarily due to two reasons: First, if the demands of the
customers are not equal, but can be distributed among
more than one vehicle, the problem can be reduced to the
equal demand model. This is done by replacing each cus-
tomer with demand w by w customers of unit demand,
each one of them is located at the location of the original
customer. Second, the insights that we get from the analy-
sis of this model will be very useful in the analysis of
models that integrate vehicle routing with other issues im-
portant to the firm.

Let N denote the set of customers, d, the distance be-
tween node i and the depot, d,,,, = maxy d,, is the
distance to the furthest customer, and d, the distance be-
tween customer i and customer j. The distance matrix
{d,} is assumed to be symmetric and to satisfy the triangle
inequality, i.e.,d, = d, for all i, j and d,, < d,, + d,, for all
i, k, j. We denote the optimal solution value of the capac-
itated VRP by Z* and that of any given heuristic H by Z*.

In what follows, an «-optimal traveling salesman tour
plays an important role. An a-optimal tour is a traveling
salesman tour whose length is no more than « times the
length of the optimal traveling salesman tour.

1.1. Worst-Case Analysis

A simple heuristic for the capacitated VRP, is the follow-
ing tour partitioning heuristic suggested by Beasley (1983)
and for which Altinkemer and Gavish (1990) provide an
interesting worst-case analysis. In this heuristic, called the
optimal partitioning (OP) heuristic, one constructs a trav-
eling salesman tour through the customers and the depot.
The tour is then optimally partitioned into segments, each
containing at most g customers, by formulating an appro-
priate shortest path problem.

This is done as follows: Given a traveling salesman tour
through the customers and the depot, the points are num-
bered x@, ¥V, ..., x in order of appearance on the
tour, where x(? is the depot. Let

Ci

the distance traveled by a vehicle that starts at

the depot, visits customers x U D x U2 x®
in this order, and returns to the depot,
4o

ifk —j=<gq;
otherwise.
If we find the shortest path from x® to x* in the directed

graph with distance cost C;, we will have chosen an opti-
mal partition of the traveling salesman tour.
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The performance of this heuristic clearly depends on the
quality of the initial traveling salesman tour chosen in the first
step of the algorithm. Hence, when the OP heuristic parti-
tions an a-optimal traveling salesman tour, it is denoted by
OP(a). Altinkemer and Gavish (1990) proved the follow-
ing result.

Theorem 1

ZOP(a)
Z*
For example, if Christofides’ (1976b) algorithm (a =

1.5) is used to obtain the initial traveling salesman tour in
polynomial time, we have

ZOP(l.S) < é B i

zZ* 2 2g°

The proof of the worst-case result for the OP(a) heuris-
tic suggests that if we can improve the bound in Theorem
1 for @ = 1, then the bound can be improved for any a > 1.
However, the following theorem, proved by Li and Simchi-
Levi (1990), says that this is impossible. That is, it shows
that for « = 1, Z°PW/Z* tends to 2 when g approaches
infinity.

1+(1-Ye.

Theorem 2. For any infeger q¢ = 1, there exists a problem
instance with Z°FM/Z* arbitrarily close to 2 — 2/(g + 1).

We conclude that the worst-case performance of the opti-
mal partitioning heuristic is quite disappointing; the cost of
the solutions produced by OP can be quite far from the
optimal cost. It is therefore natural to compare this perfor-
mance with the average performance of OP. This is done
in the next subsection.

1.2. Average-Case Analysis

For the purpose of characterizing the average performance
of OP, we assume in the remainder of this section that the
customers are points in the plane and that the distance
between any pair of customers is given by the Euclidean
distance. The next result, obtained by Haimovich and
Rinnooy Kan (1985) fully characterizes the average perfor-
mance of the OP(«) heuristic by comparing it to the best
possible performance, i.e., to Z*.

Theorem 3. Let x,, kK = 1, 2,..., n be a sequence of
independent random variables having a distribution p. with
compact support in R*. Let d(y) be the Euclidean distance
between the depot and y € R* and let

Ed) = J d(y) du(y) .
9{2

Then, for any fixed «, we have with probability one,

* OP(a)
lim Z- = 1im 2—— = 2 £(q) .
n-—>o n q

n—ow RN

The proof of Theorem 3 is based on constructing lower
and upper bounds that converge asymptotically to the

same value. The fact that Z* ~ 2nE(d)/q is explained as
follows Haimovich and Rinnooy Kan: Any solution for
the capacitated VRP has two cost components; the first
component is proportional to the total “radial” cost be-
tween the depot and the customers. The second compo-
nent is proportional to the “circular” cost; the cost of
traveling between customers. This cost is related to the
cost of the optimal traveling salesman tour. It is well known
(Beardwood, Halton and Hammersley 1959) that, for large n
the cost of the optimal traveling salesman tour grows like
Vn, while the total radial cost between the depot and the
customers grows like n because the number of vehicles
used in any solution is at least [n/(ﬂ. Therefore, it is intui-
tive that when the number of customers is large enough
the first cost component will dominate the optimal solu-
tion value.

2. VRP WITH UNEQUAL DEMANDS

In this section, we consider the more practical and usually
more complicated, capacitated VRP with unequal de-
mands. In this version, each customer i has a demand w,
and the capacity constraint states that the total amount
delivered by a single vehicle cannot exceed the vehicle
capacity ¢. As mentioned, if the demand of a customer can
be split over several vehicles, the problem is reduced to the
equal-weight case by treating a customer with demand w as
w customers with unit size demand all at the same loca-
tion. Therefore, the results of the previous section apply.
Consequently, we consider the case where the demand of a
customer may not be divided among vehicles. This con-
straint introduces bin-packing features into the routing
problem and, consequently, requires different solution
techniques. We refer to this version as the capacitated
VRP with unsplit demands.

2.1. Worst-Case Analysis

In the worst-case analysis presented here, we assume that
the numbers w;, w,,..., w, and g are rationals, and
hence, without loss of generality, g and w, are assumed to
be integers.

The tour partitioning heuristic suggested for the equal
demand case (i.e., OP(a)) can be trivially generalized for
the unequal demand case. This is done by replacing the
condition ¥ — j < ¢ in the definition of the quantities C,,
(see subsection 1.1) by Zf;,H w, < gq. In that case, the
heuristic is denoted UOP and if the initial tour is an
a-optimal traveling salesman tour the algorithm is called
UOP(a). Altinkemer and Gavish (1987) prove the follow-
ing resuit.

Theorem 4
ZUOP(a) 1
<2+ (1- E)a .

Observe the increase in the worst-case bound of the
UOP(a) relative to that of OP(«). This increase is due to
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the fact that when a tour partitioning heuristic assigns cus-
tomers to vehicles, it can generate, in the worst-case, twice
as many vehicles as in the optimal solution. By contrast, in
the equal demand case, tour partitioning heuristics can
always find a solution that uses the minimum number of
vehicles. In view of this observation, it is not surprising
that the bound of Theorem 4 cannot be reduced. Indeed,
Li and Simchi-Levi show that when « = 1, this bound is
asymptotically tight as g approaches infinity.

Theorem 5. For any integer q = 1, there exists a problem
instance with ZUVPTM/Z* arbitrarily close to 3 — 6/(q + 2).

2.2, Average-Case Analysis

Results on the average performance of algorithms for the
capacitated VRP with unsplit demands are closely related
to results obtained for the bin-packing problem, a problem
that has been analyzed extensively in the literature. An
instance of the bin-packing problem is composed of the
bin capacity (equal to 1) and a set of items each with a
prespecified size no larger than 1. The problem is to find
the smallest number of bins in which these items can be
packed, subject to the constraint that the total size of items
assigned to a single bin does not exceed 1.

In the probabilistic analysis of the capacitated VRP with
unsplit demands we assume, without loss of generality, and in
accordance to the convention in Coffman, Lueker and
Rinnooy Kan (1988), that the vehicles’ capacity g equals 1,
and the demand of each customer is no more than 1. Thus,
vehicles and demands in the capacitated VRP correspond
to bins and item sizes (respectively) in the bin-packing
problem. Hence, for every routing instance there is a
unique corresponding bin-packing instance.

2.2.1. Optimal Solution Value

Since the average performance of any heuristic has to be
evaluated relative to the best possible performance, we
start with the optimal solution value. Assume that the de-
mands wy, w,, . . ., w, are independent and identically dis-
tributed with distribution & defined on [0, 1]. In this
section, we find the asymptotic optimal solution value for
any distribution of the demands ®. This is done by showing
that an asymptotically optimal algorithm for the bin-
packing problem, with item sizes distributed like ®, can be
used to solve the capacitated VRP with unsplit demands.

Given the demands wy, w,, ..., w,, let b* be the num-
ber of bins used in the optimal solution for the corre-
sponding bin-packing problem. As demonstrated in Rhee
and Talagrand (1987), there exists a constant y > 0 such
that

*
ll_x;nw b; =1v (as.).

The following theorem is proven in Bramel et al. (1992).

Theorem 6. Let x,, kK = 1, 2,..., n be a sequence of
independent random variables having a distribution p. with
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compact support in A C R% Let d(y) be the Euclidean
distance between the depot and point y € R* and let

E(d) =J' d(y) du(y) .
9‘2

Let the demands w,, k = 1,2, ..., n be a sequence of i.i.d.
random variables having a distribution ® with support on
[0, 11 and assume that the demands and the locations of the
customers are independent of each other. Then, almost
surely,

*
lim ZT = 2vE(d) .

Intuitively, this implies that for large values of n, ny
vehicles are needed to serve the customers and, on aver-
age, each one travels a distance of 2E(d). This is explained
by the fact that the distribution ® is independent of » and
thus with high probability the number of customers per
vehicle is constant. Consequently, the total distance trav-
eled is dominated by the radial distance to and from the
depot.

Theorem 6 is proved by constructing lower and upper
bounds that asymptotically converge to the same value; the
asymptotic optimal solution value. The upper bound is
based on the following feasible solution. It uses a special
region partitioning scheme, in which the area where the
customers are located is partitioned by means of a grid
into many squares, also referred to as subregions. Custom-
ers within the same subregion are assigned to vehicles to
minimize the number of vehicles used within each subre-
gion. Every vehicle serves customers from only one square
using the following routing strategy: The vehicle travels to
the subregion where its customers are located, visits the
customers in any order, and then returns to the depot. By
choosing the grid such that the size of each square tends to
zero at a rate slower than the rate in which » increases,
one can prove, under the assumptions of Theorem 6, that

. Z*
hn}oTs 2yE(d) (as.).

This upper bound is combined with a lower bound on the
optimal solution value to prove Theorem 6.

2.2.2. Analysis of Classical Heuristics

The complexity and the economic importance of the ca-
pacitated VRP with unsplit demands have motivated the
development of many heuristics for its solution; see, e.g.,
Christofides (1985) or Fisher (1995). Of special interest is
the class of heuristics called (by Christofides, 1976a and
1985) two-phase methods. These heuristics are of two
types: cluster first-route second, or route first-cluster sec-
ond. In the first category, customers are clustered into
groups and assigned to vehicles (phase I) and then efficient
routes are designed for each cluster (phase II). In the
second category, one constructs a traveling salesman tour
through all the customers (phase I) and then partitions the
tour into segments (phase II). One vehicle is assigned to
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each segment and visits the customers according to their
appearance on the traveling salesman tour.

Bienstock, Bramel and Simchi-Levi (1993) analyze the
average performance of heuristics that belong to the latter
class. To present their result, we need a precise definition
of the class of the route first-cluster second method. De-
fine this class as all those heuristics that first order the
customers according to their locations and then partition
this ordering to produce feasible clusters. These clusters
consist of sets of customers that are consecutive in the
initial order. Customers are then routed within their clus-
ter depending on the specific heuristic.

Observe that this definition of the class of the route
first-cluster second heuristics is more general than classical
definitions. It is also clear that the UOP(a) heuristic de-
scribed in subsection 2.1 belongs to this class of heuristics.
The sweep algorithm suggested by Gillett and Miller
(1974) can also be viewed as a route first-cluster second
type of heuristic. In this algorithm, an arbitrary customer is
selected as a starting customer. The other customers are
ordered according to the angle between them, the depot
and the starting customer. Customers are then assigned to
vehicles following this initial ordering and efficient routes
are designed for each vehicle.

Bienstock, Bramel and Simchi-Levi show that the per-
formance of any heuristic in this class is strongly related to
the performance of a nonoptimal bin-packing heuristic
called next fit (NF). Thus, heuristics in this class can never
be asymptotically optimal for the capacitated VRP with
unsplit demands.

The next-fit bin-packing heuristic can be described in
the following manner. Given a list of n items where the
size of item i is w,, start with item 1 and place it in bin 1.
Suppose that we are packing item j; let bin i be the highest
indexed nonempty bin. If item j fits in bin i, then place it
there, else place it in a new bin indexed i + 1. Thus, the
NF heuristic assigns items to bins according to the order
they appear without using any knowledge of subsequent
items in the list.

In their seminal work on the use of martingale in-
equalities for NP-complete problems, Rhee and Talagrand
show that for any distribution of the item sizes, there
exists a constant YNt > 0 such that lim,_., b™/n = yNF
almost surely, where bNF is the number of bins produced
by the NF packing and y"F depends only on the distri-
bution of the item sizes. This constant is used in the fol-
lowing theorem proved in Bienstock, Bramel and
Simchi-Levi.

Theorem 7. Let H be a generic route first-cluster second
heuristic, that is, H is a heuristic that starts by ordering the
customers in some manner depending only on their relative
locations and not on their demands. Then, under the as-
sumptions of Theorem 6 we have

lim %Z“z 2WNEWd) (as.).

We therefore conclude that the empirically well-studied
route first-cluster second methods can never be asymptot-
ically optimal for the capacitated VRP with unsplit de-
mands except in some trivial cases, i.e., when y = y~F. The
next theorem completely characterizes the average perfor-
mance of the UOP(«) heuristic by showing that it is the
best possible heuristic in the route first-cluster second
class.

Theorem 8. Under the assumptions of Theorem 6, the
UOP(«r) heuristic is the best possible heuristic in the class of
route first-cluster second, that is, for any fixed « = 1 we have

lim L ZUOP@ — 2, NFg(g)

n—o 1

(a.s.).

In view of Theorems 6, 7, and § it is interesting to
compare Y"F to y because the asymptotic error for any
heuristic H in the class of route first-cluster second
satisfies

lim ZHZ* = lim ZYOP@)Z* = yNF/y

This ratio was characterized by Karmarkar (1982) for the
case when the item sizes are uniformly distributed on an
interval [0, a] for 0 < a < 1. For instance, for a satisfying
1/2 < a < 1, we have

2

YNy ==

1
p {m(15a3— 9a2 + 3a — 1)

1—a 1—a
+ \/5( a )tanh( T >},
so that when the item sizes are uniform [0, 1] the above
ratio is 4/3 which implies that UOP(«) converge to a value
which is 33.3% more than the optimal cost, which is a very
disappointing performance for the best heuristic currently
available in terms of worst-case behavior.

The sweep (S) algorithm also possesses the properties
needed to apply the lower bound of Theorem 7 because
this heuristic starts by choosing the order of the customers
(according to the angle between them the depot and the
starting customer) and then assigns them to vehicles
following this order. In fact, Bienstock, Bramel and
Simchi-Levi prove a much stronger result. To present the
result, let P, be the long-term fraction of bins with k items
generated by the NF heuristic. As we shall see in Theorem
9, the expected distance traveled in the solution generated
by the sweep depends on these values.

Without loss of generality, assume that the distribution
of customer locations is indexed by polar coordinates (i.e.,
w(r, 0), r € [0, d,,..,], 6 € [0, 27]), where the starting
angle (6 = 0) is chosen arbitrarily. Let

[

n() = J plr, 0)rdr.

0

Let F(#|6) be the conditional probability of a point being

at a distance no more than ¢ from the depot, given that the
point is at angle 6. We have the following theorem.
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Theorem 9. Under the assumptions of Theorem 6 we have

1 x 27 dmax
lim - E(Z%) =24 X P, J f
n k=1

n—> 0 0
(1 — F¥(¢|0)) dt w(0) d6.

Intuitively, this is explained as follows: When the num-
ber of customers, #, is large enough, the sweep algorithm
produces ny"" vehicles, of which nP,y~t have exactly k
customers. Now consider all the customers having angle 0
with 6, < 0 < 6, + € for some 6, = 0. Since the number of
customers, 7, is very large, the number of customers in this
sector is also very large. Thus, a vehicle that serves a cus-
tomer from that sector will, with high probability, serve no
customers from other sectors. Focusing now on a single
vehicle that serves customers set § from this sector and
choosing e small enough, the total distance traveled by that
vehicle can be made arbitrary close to twice the distance
from the depot to the furthest customer in S. Conse-
quently, if S includes k customers, the expected distance to
the furthest customer is roughly

dmax
f (1 — F*(¢|6y)) dt .

0

We conclude that the main drawback of route first-
cluster second methods is that a higher priority is given to
the routing part of the problem than to the bin-packing
part of it. These results show that in this case the heuristic
can never be asymptotically optimal, except in some trivial
cases (e.g., item sizes are uniformly distributed on [a, b]
for @ > 0.5). This demonstrates that a heuristic has a
potential of being asymptotically optimal only if the bin-
packing component of the capacitated VRP is considered
at the same time as the routing component. This is exactly
the type of algorithm described in the next section.

2.2.3. A New Class of Heuristics

Bramel and Simchi-Levi (1995) used the insight obtained
from the analysis of the asymptotic optimal solution value
(see Theorem 6 and the discussion that follows it) to de-
velop a new and highly effective class of heuristics for the
capacitated VRP with unsplit demands. Specifically, this
class of heuristics was motivated by the following
observations.

A by-product of the proof of Theorem 6 is that the
feasible solution used to find an upper bound on Z* is
asymptotically optimal. In this upper bound the length of
every tour that visits a set of customers S consists of two
parts. The first is the length of the four that starts at the
depot visits the subregion (where its customers are lo-
cated) and then goes back to the depot. The second is the
additional distance obtained by inserting all the customers
in § into this tour. It is clear, therefore, that if we can
construct a heuristic that assigns customers to vehicles so
as to minimize the sum of the length of all simple tours
plus the total insertion costs of customers to each simple
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tour, then the heuristic will have the right structure to be
asymptotically optimal.

To construct such a heuristic we formulate the routing
problem as a standard combinatorial problem commonly
called (see, e.g., Pirkul 1987) the capacitated concentrator
location problem. This problem can be described as fol-
lows: Given m possible sites for concentrators of fixed ca-
pacity Q, we would like to locate concentrators at a subset
of these m sites and connect n terminals, where terminal i
uses w, units of a concentrator’s capacity, in such a way
that each terminal is connected to exactly one concentrator,
the concentrator capacity is not exceeded and the total
cost is minimized. A site-dependent cost is incurred for
locating each concentrator; that is, if a concentrator is

located at site j, the setup cost is v, for j = 1,2,..., m.
The cost of connecting terminal i to concentrator j is
¢, (the connection cost) fori = 1,2,...,n and j = 1,
2,...,m.

The capacitated concentrator location problem can be
formulated as the following integer linear program. Let

_ {1, if a concentrator is located at site J,
I 0, otherwise,

and let

_ { 1, if terminal/ is connected to a concentrator at site i
¥ |0, otherwise.

Problem P

M3

m
CyXxy + 2 vy,

n
Minimize >
=1 1 Jj=

—

]

subject to
2x, =1 forall /i, (1)
J=1
> w,x, <Q forallj, (2)
=1
Xy <Yy, foralli,j, (3)
x, €10, 1} foralli,j, (4)
y, €10, 1} forallj. 5)

Constraints 1 ensure that each terminal is connected to
exactly one concentrator, and constraints 2 ensure that the
concentrator’s capacity constraint is not violated. Con-
straints 3 guarantee that if a terminal is connected to site
J, then a concentrator is located at that site. Constraints 4
and 5 ensure the integrality of the variables.

In formulating the capacitated VRP with unsplit de-
mands as the capacitated concentrator location problem,
every customer x, in the VRP is a possible concentrator
site in the location problem. The length of the simple tour
in the VRP that starts at the depot visits customer x, and
then goes back to the depot is the setup cost in the loca-
tion problem (i.e., vy, = 2d,). Finally, the cost of inserting a
customer into a simple tour in the VRP is the connection
cost in the location problem (ie., ¢, = d, + d, — d).
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Hence, finding a solution for the capacitated VRP is
obtained by solving a facility location problem with the data
as described before. The solution obtained for the capaci-
tated concentrator location problem is transformed (in an
obvious way) to a solution for the capacitated VRP.

The capacitated concentrator location problem, though
NP-hard, can efficiently be solved by the familiar
Lagrangian relaxation technique, as described in Pirkul
(1987).

We can now describe an algorithm for the capacitated
VRP, called the location-based heuristic (LBH), which is
based on the insight obtained from the analysis of the
asymptotic optimal solution (the details of the algorithm
are presented in Bramel and Simchi-Levi, 1995).

Algorithm LBH

STEP 1. Formulate the capacitated VRP as a capaci-
tated concentrator location problem.

STEP 2. Solve the capacitated concentrator location
problem.

STEP 3. Transform the solution obtained in Step 2 into
a solution for the VRP.

This algorithm was tested empirically and analyzed ana-
lytically. For instance, Bramel and Simchi-Levi (1995)
prove the following theorem.

Theorem 10. Under the assumptions of Theorem 6, there
is a version of the LBH which is asymptotically optimal,
ie.,
lim % ZUBH — 20E(d) (a.s.).

Finally, we observe that the generalized assignment heu-
ristic due to Fisher and Jaikumar (1981) can be viewed as
a special case of the LBH in which the seed customers are
first selected by a dispatcher. In the second step, customers
are assigned to the seeds in an efficient way by solving a
generalized assignment problem. The advantage of the
LBH is that the selection of the seeds and the assignment
of customers to seeds are done simultaneously, and not
sequentially as in the generalized assignment heuristic. A
by-product of the analysis, therefore, is that when the gen-
eralized assignment heuristic is carefully implemented
(i.e., “good” seeds are selected), it is asymptotically opti-
mal as well.

3. THE VRP WITH TIME WINDOW CONSTRAINTS

In many distribution systems each customer specifies, in
addition to the load that has to be delivered to it, a period
of time, called a time window, in which this delivery must
occur. The objective is to find a set of routes for the vehicles,
where each route begins and ends at the depot, serves a
subset of the customers without violating the vehicle capacity
and time window constraints, while minimizing the total
length of the routes. We call this model the VRP with time
windows.

Due to the wide applicability and the economic impor-
tance of the problem, variants of it have been extensively
studied in the vehicle routing literature; for a review, see
Solomon and Desrosiers (1988). Most of the work on the
problem has focused on empirical analysis while very few
papers have studied the problem from an analytical point
of view in an attempt to characterize the theoretical behav-
ior of heuristics and to use the insight obtained to con-
struct effective algorithms for it. An exception is the recent
work of Federgruen and van Ryzin (1992), Bramel and
Simchi-Levi (1993) and Bramel, Li and Simchi-Levi
(1994). We will describe the results of the second paper,
which lends itself to a computationally attractive
algorithm.

To present the results, let the quadruplet (wy, €z, Sk, I)
be the parameters of the kth customer which represents,
respectively, the load that must be delivered, the earliest
starting time for service, the time required to complete the
service, called the service time, and the latest time service
can end.

Surprisingly, the optimal solution of the VRP with time
windows is directly related to the optimal solution of a
machine scheduling problem defined as follows. Associated
with each customer k is a job whose parameters are the
parameters of customer k. That is, the parameters of job k
are (W, €x, Sk, i), where wy is referred to as the load of job
k, e, is referred to as the release time of job k, s, represents
the processing time of job k, and , is referred to as the due
date of job k.

Consider the following machine scheduling problem de-
fined by the parameters of the customers N and an infinite
sequence of parallel machines. Job (customer) k becomes
available for processing at time e, and must be finished
processing by time /.. The objective in this scheduling
problem is to assign each job to a machine such that each
machine has at most one job being processed on it at a
given time; the processing time of each job starts no earlier
than its release time and ends no later than its due date;
and the total load of all jobs assigned to a machine is no
more than 1, and the number of machines used is
minimized.

Let M* be the minimum number of machines needed to
schedule the set N of jobs. The theory of subadditive pro-
cesses (see Kingman 1976) implies that if M? is the mini-
mum number of machines needed to schedule a set of n
jobs whose parameters are drawn independently from a
distribution @, then there exists a constant y > 0 (depend-
ing only on ®) such that lim,_,., M;/n = v (as.).

Bramel and Simchi-Levi (1993) show that asymptotically
the VRP with time windows is no more difficult to solve
than the corresponding scheduling problem. The main re-
sult is as follows.

Theorem 11. Let x,, X5, . . . , X, and E(d) be defined as in
Theorem 6. Let the customer parameters {(wy, €x, Sk, Lp):
k € N} be drawn independently from a distribution ® with a
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continuous density. Let M, be the minimum number of ma-
chines needed to feasibly schedule the n jobs corresponding to
these parameters, and let lim,,_,., M/n = v (a.s.). Then

lim }lzj‘, =2vE(d) (a.s.).

An important by-product of the analysis is the develop-
ment of a new and highly efficient algorithm for the VRP
with time windows. Computational evidence shows that
the algorithm works very well on a set of standard test
problems; see Bramel and Simchi-Levi (1993).

4. A COLUMN GENERATION TECHNIQUE

A classical method for solving the VRP with capacity and
time window constraints, suggested by Balinski and Quandt
(1964), is based on formulating the VRP as a set partition-
ing problem. The idea is as follows. Let the index set of all
feasible routes be {1, 2, ..., R} and let ¢, be the length of
route r. Define

L
alr 0’

foreachi = 1,2,...,nandr =1, 2,..., R. Finally, for
r=1,2,..., R, let

L
Yr 0,

In the set partitioning formulation of the VRP, the objec-
tive is to select a minimum cost set of feasible routes such
that each customer is included in some route. It is the
following integer program.

if customer i is served in route r,
otherwise,

if route r is in the optimal solution
otherwise.

Problem S

R
Minimize D, y,c,

r=1

subject to
R
Yya,=1, foralli=1,2,...,n (6)
r=1
vy, €4{0,1}, forallr=1,2,...,R.

Observe that we have written constraints 6 as inequality
constraints. This is possible because the distances satisfy
the triangle inequality and therefore each customer will be
visited exactly once in the optimal solution.

This formulation was first used successfully by Cullen,
Jarvis and Ratliff (1981) to design heuristic methods for
the VRP. More recently, Desrochers, Desrosiers and
Solomon (1992) have used it in conjunction with other
methods to generate optimal or near-optimal solutions to
the VRP.

The set of all feasible routes is extremely large and one
cannot expect to generate it completely. Even if this set
is given, it is not clear how to solve the set partitioning
problem because it is a large-scale integer program. To
overcome the first difficulty, Desrochers, Desrosiers and
Solomon use the celebrated column generation technique,

BERTSIMAS AND SiMcHI-LEvi / 293

which makes it possible to solve the linear programming
relaxation of problem S without having to enumerate all
the routes. This is done by enumerating a portion of all pos-
sible routes, and solving the resulting linear programming
relaxation with this partial route set. The solution to the
linear program is then used to determine if there are any
routes not included which can reduce the solution value.
This is the column generation step. Using the values of the
optimal dual variables (with respect to the partial route
set), we generate a new route and resolve the linear pro-
gramming relaxation of the set partitioning problem. This
is continued until one can show that an optimal solution to
the linear program is found; one that is optimal for the
complete route set. Finally, to get an integer solution to
the set partitioning problem, the linear program is com-
bined in a branch-and-bound routine.

It is well known that a branch-and-bound strategy works
well only if the lower bound used in the bounding step is
very tight. Fortunately, many researchers have reported
that the linear programming relaxation of the set partition-
ing problem provides a solution close to the optimal inte-
ger solution; see, e.g., Desrochers, Desrosiers and
Solomon. That is, the solution to the linear programming
relaxation of S provides a strong lower bound on the solu-
tion to the VRP. Recently Bramel and Simchi-Levi
(1993b) demonstrate why this is true in general. They
prove the following theorem.

Theorem 12. Let the customer locations be independently
and identically distributed according to a distribution p with
compact support in R?. Let the customer parameters be inde-
pendently and identically distributed like ®. Let Z-¥ be the
value of the optimal fractional solution to S, and let Z* be
the value of the optimal integer solution to S; that is, the
value of the optimal solution to the VRP. Then,
li l ZLP =1 l VA
im im (a.s.).
n—e N n—o 1

Observe that an alternative formulation of problem § is
obtained when constraints 6 are replaced by equality con-
straints, i.e.,

R
>ya,=1, foralli=1,2,...,n.
r=1

We call this problem SE. Since any feasible solution to the
linear programming relaxation of problem SE is feasible
for the linear programming relaxation of S, the cost of the
optimal solution to the linear programming relaxation of
SE is no smaller than the cost of the optimal solution to
the linear programming relaxation of problem S. Conse-
quently, Theorem 12 also holds when Z'* represents the
optimal solution value of the linear programming relax-
ation of problem SE.

The theorem thus implies that the optimal solution
value of the linear programming relaxation of problem S
(and problem SE) tends to the optimal solution of the
vehicle routing problem as the number of customers tends
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to infinity. This is important since, as shown by Bramel and
Simchi-Levi (1993), other classical formulations of the
VRP can lead to diverging linear and integer solution
values.

5. APPLICATIONS TO DISTRIBUTION SYSTEMS

The results obtained from the analysis of the capacitated
VRP have been used to analyze, develop, and implement
efficient algorithms for models that integrate vehicle routing
with other issues important to a firm. This includes models
that integrate inventory considerations with transportation
costs as well as design issues associated with distribution sys-
tems. For a discussion on applications to inventory-routing
models we refer the reader to Anily and Federgruen (1990,
1993), Gallego and Simchi-Levi (1990), Federgruen and
Simchi-Levi (1992), Chan, Federgruen and Simchi-Levi
(1993), and Bramel and Simchi-Levi (1995). Next we de-
scribe the use of the results in the context of system design.

5.1. Applications to Systems Design

The results described in subsection 1.2 characterize the
average behavior of the OP(a) as well as the asymptotic
optimal solution value of the single-depot capacitated
VRP with equal demands. These results enable us (see
Simchi-Levi 1992), to develop analytical models to assist
the design and control of distribution systems.

As an example, consider a company that delivers con-
sumer goods to a number of stores located in an area of size
A. The company has decided to open a number of ware-
houses in the region and has carried out a market survey
to estimate the number of potential customers, denoted by
n, and the probability distribution of their demands. At
this preliminary stage of the analysis the company assumes
that all potential customers have the same probability dis-
tribution with w being the expected customer’s demand.

Based on the information available from the survey, the
company wants to determine the number and locations of
warehouses; how to allocate customers to depots and what
should be the routing strategies to minimize total system
cost. This cost includes a cost associated with the average
distance traveled by all vehicles plus a fixed setup cost,
denoted by ¢, for each established depot.

The insight obtained from the analysis of the capaci-
tated VRP can be used to propose a three-stage hierarchi-
cal approach in which decisions about the number of
centers and their locations (first stage), customers alloca-
tions (second stage), and routing strategies (third stage)
are combined to reduce total system cost.

As we have seen, the total radial cost between the depot
and the customers dominates the objective function. This
cost is related to the cost of the K-median problem. Thus,
the K-median problem provides an insight to our model.
For instance, when the demand of a customer can be split
over several vehicles, the total distance traveled in a distri-
bution system with K centers optimally located in the area
is asymptotically

2—:_;'1—3\//1/7,

where B = 0.377196 .. .. and q is the vehicle capacity. This
is true as long as 1/K, = o(n) and K, = O(n/log n).
Furthermore, this asymptotic value is achieved by placing
centers in a regular hexagonal pattern throughout the area
and each service center serves all the customers inside its
hexagon.

It follows that, for large enough n, the best number of
warehouses minimizes the following function (recall that c
is a fixed setup cost for establishing a depot)

TC(K) = % BVAJK + cK.

Let 8 = (B (Wwn/gc) VA)*>, then the best number of sta-
tions is [8] or [8], whichever yields the best TC(K). Further-
more, the analysis also shows where to locate the centers
and how to allocate customers to each center, thus provid-
ing answers to the strategic and tactical problems.

What should be the routing strategy used on a daily
basis? Note that in this model, we assume that every work-
ing day the servers have exact information on the custom-
ers that need service and their actual demands. Hence,
every working day, each center faces an instance of the
single depot capacitated VRP, for which efficient heuristics
exist. For example, by using the OP(a) heuristic on a daily
basis the minimal total cost (TC(K)) can actually be
achieved when the number of customers # is large enough.

We can now summarize the hierarchical design: Choose
the number of stations as the one that minimizes TC(K),
locate the facilities at the center of hexagonal patterns
(strategic decision), each customer will be served by its
closest service station (tactical decision), and use the
OP(a) heuristic on a daily basis to find efficient routes for
servers (operational control).

The main difficulty in using a hierarchical approach to
design is in estimating the difference between the total
system cost associated with the hierarchical design and the
minimal total cost (obtained by integrating the three levels
of decisions). In theory, the approach provides a design in
which the total system cost approaches the minimal total
cost, as the number of customers tends to infinity. In prac-
tice, however, the rate of convergence of the hierarchical
design cost to the optimal cost may be quite slow. To
estimate this rate of convergence Simchi-Levi (1992) per-
forms a series of numerical experiments for problems of
moderate size. For instance, for three distribution centers,
located according to the hierarchical design, the relative
error between the hierarchical design cost and a lower
bound on the optimal solution value decreases from 35% to
16% as the number of customers increases from 100 to 500.

6. STOCHASTIC AND STATIC VEHICLE ROUTING

In this section, we consider a natural variation of the clas-
sical VRP in which demand at each location is unknown at
the time when the tour is designed, but is assumed to
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follow a known probability distribution. This situation
arises in practice whenever a company (e.g., UPS), on any
given day, is faced with the problem of deliveries/collec-
tions to/from a set of customers, each of which has a ran-
dom demand.

Vehicle routing problems with random demands have
received limited attention in the literature. Stewart and
Golden (1983), Dror and Trudeau (1986), Dror, Laporte
and Trudeau (1989), and Laporte and Louveaux (1990)
use stochastic programming techniques to solve optimally
small sized problems. Compared with this technique, the
approach discussed in this section is completely different.

An obvious strategy to the vehicle routing with random
demands is to redesign the routes when the demand becomes
known. There are, however, several difficulties with such
an approach: 1) computing resources might not be avail-
able, 2) even if resources are available it might be very time
consuming to redesign the routes, 3) redesigning the routes
might create confusion to drivers, and finally, 4) regularity
and personalization of service by having the same vehi-
cle and driver visit a particular customer every day is not
guaranteed if one redesigns the routes. To overcome these
difficulties, the strategy of designing an a priori route
among all potential customers has been proposed in Jaillet
(1988) for the traveling salesman problem (see also
Jaillet and Odoni 1988) and Bertsimas (1992) for the VRP
as an alternative to the strategy of redesigning the routes.
The idea is to find an a priori solution to the combinatorial
problems and update this solution when the demand is
realized; see Bertsimas, Jaillet and Odoni (1990).

This strategy is described as follows: Determine a fixed a
priori sequence among all potential customers. Depending
on when information about customer’s demand becomes
available update routes as follows.

Fixed a Priori Strategy A

Under this strategy the vehicle visits all the customers in
the same fixed order as under the a priori sequence, but
serves only customers requiring service that day. The total
expected distance traveled corresponds to the fixed length
of the a priori sequence plus the expected value of the addi-
tional distance that must be covered whenever the demand
on the sequence exceeds vehicle capacity.

Adaptive a Priori Strategy B

This strategy is defined similarly to the fixed strategy A
with the sole difference that routes are adaptively updated
by skipping customers with no demand on a particular
instance.

To illustrate the difference between the two strategies
consider the following example. If the a priori sequence is
0, 1,2, 3,4,5, 6, 0), the depot is node 0, the vehicle has
capacity 3, and the demand of the customers is D, = 0,
D, =2,D;=1D,=0,Ds =2, Dg =0, then under strategy
A the resulting routes are (0, 1, 2, 3, 0), (0, 4, 5, 6, 0), while
under strategy B the resulting routes are (0, 2, 3, 0), (0, 5,
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0). Note that at node 3 the capacity is reached and the
vehicle is forced to return to the depot.

There is an important difference in the philosophy of the
two updating strategies. Strategy A models situations in
which the demand (if any) of a particular customer be-
comes known only when the customer is visited. The vehi-
cle is then forced to return to the depot when its capacity
is reached. Under strategy B, however, the actual demand is
known either before the tour starts (customers call, or the
operator calls them, or in the case of package deliveries
the addresses are known) or becomes gradually known
(the driver calls the depot for the next visit), so that sav-
ings can occur by skipping customer locations with zero
demand. Notice that depending on how information about
customer demand becomes known redesigning the routes
might or might not be a possibility.

An important question that arises is how to choose the
a priori sequence. One possible solution is to choose the a
priori sequence as the one with minimal expected total
length. This value corresponds to the expected total length
of the fixed set of routes plus the expected value of the
extra distance that might be required by a particular real-
ization of the demand. The extra distance is due to the fact
that demand on the route may occasionally exceed the capac-
ity of the vehicle and force it to go back to the depot before
continuing on its route. The problem of selecting the a priori
sequence of minimum expected length is called the stochastic
VRP (SVRP). We now give some examples in which VRPs
with stochastic demand arise.

Application Areas

In a strategic planning scenario, consider a delivery and
collection company which has decided to begin service in a
particular area. The company has carried out a market
survey and identified a number n of potential major cus-
tomers who, during any collection/distribution period, have
a significant probability of requiring a visit. The company
wishes to estimate the resources necessary to serve these
customers. At this stage of planning, the company can only
assign probability distributions for the demand of all po-
tential customers. To address the planning problem the
company will wish to estimate approximately the expected
amount of travel that will be necessary on a typical day to
serve the subset of the n customers that will require a visit.

In a routing context, Lambert, Laporte and Louveaux
(1993) consider the problem in which a central bank has to
collect cash on a daily basis from several but not all of its
branches. The capacity g of the vehicle used may not cor-
respond to any physical constraint but to an upper bound
on the amount of cash that a vehicle might carry for safety
reasons. The supply of cash at each particular branch is
stochastic and has a distribution which may be different
among branches. The bank faces a similar problem, when
it wishes to deliver cash to different automatic teller
machines.

In a distribution context, the delivery of packages from a
post office has important stochastic components, where the
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probability that a certain building requires a visit can be
found from historical data and the capacity g corresponds
to the physical constraint that a truck can carry only a fixed
weight or volume. Other examples reported in the litera-
ture include a “hot meals” delivery system (Bartholdi et al.
1983) and routing of forklifts in a cargo terminal or in a
warehouse.

6.1. Problem Definition

Given a complete network, let the nodes be {0, 1, ..., n},
where node 0 denotes the depot and the set V' = {I,
2,..., n} denotes the set of customer locations. The dis-
tances d(i, j) are assumed to be symmetric and to satisfy
the triangle inequality: d(i, j) < d(i, k) + d(k, j). Let the
capacity of the vehicle be g and let D;,i = 1,. .., n be the
random variable that describes the demand of customer i.
We assume that the probability distribution of D; is dis-
crete and is known. Let p(k) = Pr{D, =k}, i=1,...,n
and k = 0, 1,..., K. We further assume that K < ¢, i.e,,
no single location has a demand exceeding the capacity g.
We further assume that the demands are independent.

There are (K + 1) possible realizations of the demand
and therefore (K + 1)" possible instances of the problem.
Given demands D,, D,, ..., D,, denote by Lizp(D;,
D,, ..., D,) the length of total distance traveled in the
optimal solution to the associated VRP. Note that since
the demand is stochastic this is a random variable. We
call the expectation of this random variable the ex-
pected length of the re-optimization strategy, since we
redesign (re-optimize) the routes at every problem in-
stance. This expected length is thus given by

E[Z%eopr]
= 2 pl(ll) . 'pn(in)LT/RP(il’ LR ln) H (7)

sy oin

where the summation is over all demand instances for the
nodes. Clearly, the exact estimation of E[Zggopr] is @
computationally intractable problem, since it involves
(K + 1)" terms, each of which involves the exact solution
of a VRP. So, in a strategic planning scenario, in which a
company needs to have an estimate of the expected travel
cost, the expected length of the re-optimization strategy is
not a realistic alternative computationally.

Let us now consider the two proposed a priori strategies
A and B. Given an a priori sequence 7let L) (iy, ..., i,) be
the length of the a priori sequence 7 which will result
under strategy i = a, b if the demand pattern 1S gy ey iy
We denote with

2 pili) o pal) LS s in) s (8)

1 n

E[LT) =

the expected length of the a priori sequence 7 under strat-
egy A and

E[L?'] = . E Pl(ll) .. 'pn(in)Ll:-(il’ LR & ln) ’ (9)

ts n

the expected length of the a priori sequence 7 under strat-
egy B.

The VRP with stochastic demand (SVRP) is then de-
fined as the following optimization problem.

Problem SVRP
E[Z*] = min E[L!), fori=a,b.

The similarity of (7) with (8) and (9) might lead one to
think that the evaluation of (8) and (9) is also an intracta-
ble problem. We next show, however, that there is an effi-
cient algorithm for the evaluation of (8) and (9).

Bertsimas proposes an O(K?n”) algorithm to compute
the expected sequences under both strategies A and B,
which implies that once an a priori sequence is selected its
performance can be evaluated efficiently.

We next address the central questions of analytically com-
paring the performance of the re-optimization strategy and
the fixed (A) and adaptive (B) a priori strategies. To
achieve this goal we propose heuristics for the SVRP and
analyze their performance from both a worst case and aver-
age point of view.

6.2. Worst-Case Analysis

The following heuristic proposed in Bertsimas is a modifi-
cation of the tour partitioning heuristic for the determinis-
tic VRP.

Cyclic Heuristic

1. Given an initial sequence 7 & 7, = (0, 1, 2,..., n, 0),
consider the sequences 7, = (0,4,...,n,1,...,i =1,
0),i=2,...,n

2. Compute E[L7] foralli = 1,...,n.

3. The sequence with the minimum expected length
among E[L7],i=1,...,nis the proposed solution 7
to the SVRP under the fixed strategy A.

When the initial sequence is an a-optimal traveling
salesman tour the heuristic is denoted CH(«) and its value
is E[ZSH™)]. Let E[Z]] be the expected length of the op-
timal sequence under the fixed strategy A. The following
theorem is proved in Bertsimas.

Theorem 13. Assume that the demands of the customers are
identically distributed. If the initial sequence given to the cy-
clic heuristic is an a-optimal traveling salesman tour, then
under the triangle inequality

%%?<1+a+%<ﬁqﬁ—l>=1+a+o(%).

Moreover, if Pr{D = 0} = 0, i.e., all customers have
some demand, then one can strengthen the previous
bound to E[ZSHVE[Z zorr] < 1 + o + O(1/n), which
means that the cyclic heuristic is within a factor of 1 + « of
the re-optimization strategy.

The space filling curve heuristic has been introduced
and analyzed by Platzman and Bartholdi (1989) for the
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Euclidean traveling salesman problem. Bertsimas and
Howell (1992) analyze it for the adaptive strategy B for
Euclidean problems. The heuristic can be described as
follows.

Space-Filling Curve Heuristic

1. Given the n coordinates (x,, y,) of the points in the
plane compute the number f(x,, y,) for each point. The
function f: R> — R is called the Sierpinski curve (for
details on the computation of f(x, y) see Platzman and
Bartholdi).

2. Sort the numbers f(x,, y,) and visit the corresponding
initial points (x,, y,) in that order, producing a tour g,
which is the proposed a priori sequence for the SVRP
under strategy B.

Let E[Z3F] be the expected length of the heuristic for
the SVRP under strategy B. Let E[Z;] be the expected length
of the optimal sequence under strategy B. Bertsimas and
Howell show that:

Theorem 14. For the Euclidean instances with arbitrary de-
mand distributions
E[Z§") _ E[Z§"]
E[Z}]  E[Z%gorr]

= O(log n) .

Bertsimas and Grigni (1989) show that there exists an
example in which the logarithmic bound is achievable.
Note that previous theorems bound the degree of subopti-
mality of a priori optimization compared with the re-
optimization strategy in the worst case. Gendreau, Laporte
and Seguin (1993) propose an exact algorithm for the
SVRP and solve to optimality problems with up to 50
nodes. We next illustrate that on average the results can be
improved sharply.

6.3. Average-Case Analysis

Let X, X;,... be an infinite sequence of independent,
identically distributed random points in the unit square and
assume that the depot is at (0, 0). Let E[r] be the expected
distance from the origin and let X denote the first n points
of the sequence. Let E[Z%z0p{X"™)] be the expected
length of the re-optimization strategy and E[Z¥(X"™)],
E[Z3(X?™)] be the expected lengths of the two a priori
strategies a, b, respectively. Let E[ZSHVM(X™)] be the
expected length of the cyclic heuristic if the initial se-
quence given to the cyclic heuristic is the nearest neighbor
tour.

Let D be the random variable that describes the demand
of each customer. Bertsimas (1992) for the capacitated
case (case 1 in Theorem 15) and Jaillet (1988) for the
uncapacitated case (case 2 in Theorem 15) prove:

Theorem 1S. The asymptotic behavior of the three updating
strategies is:

1. If q is a constant (does not depend on n), then with
probability 1
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. E[Z%popr(X™)] . E[ZSHON)(x )]
lim = lim

n—w n n—w n
. E[Z(X"™)] E[Z3(X")]
= lim = lim
n— n n—w n
__ 2E[r]E[D]
‘—“q .

2. If lim,_,,, g/Vn = «©, and p = Pr{D > 0} then almost
surely

E[Zreoprr(X™)]
m L& REOPTIA )]

Ii = p,
lim I Brsp Vp
i E[L% (X™)]
m--—-——= s
nl_)m \/'7 BTSP
E[Z3(X™)]
lim EZ2XD)_ )
n—>% vH

where BrspVp < B(p) < min[0.92Vp, Brsp], with Brgp
the constant appearing in the celebrated Beardwood,
Halton and Hammersley paper.

Notice that in the capacitated case the cyclic heuristic
initialized by the nearest-neighbor tour is asymptotically
optimal and equivalent to the re-optimization strategy,
which is particularly important since nearest-neighbor
tours are widely used in practice. In the uncapacitated case
the fixed strategy A is within a factor of 1/Vp, while strat-
egy B is within a small constant factor. From the re-
optimization strategy in terms of performance, similar
asymptotic theorems can be proved for the case that the
distribution of customer locations has a continuous part
with density f(x).

6.4. Reflections

The previous results attempted to offer analytical evidence
that the performance of a priori strategies for the SVRP
are close to the strategy of re-optimization when the num-
ber of customers tends to infinity. This is true from worst
case as well as average case points of view.

From a practical standpoint, we believe that the a priori
strategies provide an alternative to the strategy of re-
optimization, and they can be useful in the absence of
intense computational power. Bertsimas and Howell
(1992) for the uncapacitated and Bertsimas, Chervi and
Peterson (1995) for the capacitated case report extensive
computational results which support the results of the an-
alytical investigations.

7. STOCHASTIC AND DYNAMIC VEHICLE
ROUTING IN EUCLIDEAN SERVICE REGIONS

As we have seen in the previous sections the classical view
of VRP is static and deterministic. The previous section
represented a partial departure from this paradigm, ad-
dressing the VRP with stochastic but static demands. Yet,
in many of the practical applications in which VRPs arise
(e.g., distribution, inventory resupply, mobile repair), there
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are significant stochastic but also dynamic components to
the problem. Indeed, in many real logistics systems, de-
mands arrive randomly in time and thus routing is a con-
tinuous process of collecting demands, forming tours, and
dispatching vehicles.

As a canonical example of a logistics application with
strong probabilistic and dynamic components, consider the
following utility repair problem: A utility firm (electric,
gas, water and sewer, highway, etc.) is responsible for
maintaining a large, geographically dispersed facilities net-
work. The network is subject to failures (major and minor)
which occur randomly both in time and space (location).
The firm operates a fleet of repair vehicles which are dis-
patched from a depot to respond to failures. Routing deci-
sions are made based on a real-time log of current failures
and perhaps some characterization of the future failure
process. Vehicle crews spend a random amount of time
servicing each failure before they are free to move on to
the next failure. The firm would like to operate its fleet in
a way that minimizes the average downtime due to
failures.

There are other closely related problems to this canoni-
cal example that arise in practice. For instance, consider a
firm that delivers a product from a central depot to cus-
tomers based on orders that arrive in real time. Orders are
entered into a log and delivery vehicles are dispatched with
the objective of minimizing some combination of the deliv-
ery cost and the average wait for delivery (service level).
Such an order process is likely to be found in firms that
serve a large population of customers {or potential cus-
tomers) each of whom orders relatively infrequently (e.g.,
home heating oil distributors, mail order firms, etc.).

Additional important examples are found in finished
goods distribution and freight consolidation. Consider, for
example, an automobile manufacturer. Cars are produced
at an assembly plant and put into finished goods invento-
ries (parking lots) to await distribution by a fleet of car-
hauling trucks. Each car is designated for a particular
dealer. Conceptually, the inventory can be thought of as a
“log” of locations that must be visited by the delivery ve-
hicles. New entries to this log are made every time a new
vehicle is added to the inventory, and entries are deleted
when automobiles are delivered to their designated deal-
ers. For a fixed production rate, lowering the waiting time
in this case is, by Little’s theorem, equivalent to reducing
the inventory of finished goods either on the lot or in
transit (i.e., the “pipeline” inventory). The manufacturer
would like to minimize the sum of its delivery and holding
costs and also provide quick delivery times to its dealers.

Similar distribution problems are found in freight con-
solidation (e.g., less-than-truckload (LTL) shipping) and
parcel post systems. Here distribution centers receive par-
tial loads designated for specific locations in a service re-
gion. These partial loads are queued (stored in a
distribution terminal) and eventually consolidated into full
truckloads for delivery. Whereas travel cost is an impor-
tant consideration in these systems, lowering the wait for

delivery is also a concern, both for improving the delivery
time and, as in the previous example, for reducing inven-
tory costs (terminal space, insurance costs, etc.).

For these applications, static, deterministic vehicle rout-
ing models do not capture the essential tradeoffs needed to
understand and effectively operate these systems. Indeed,
we see that minimizing travel distance—the classical objec-
tive—is often less important than minimizing delivery
times. This is true for several reasons:

1. the firm may compete primarily on the basis of service
level rather than delivery cost;

2. inventory costs may dominate delivery costs, in which
case the firm may want to quickly off-load its stock of
finished goods;

3. the firm may be employing a just-in-time (JIT) inven-
tory and production policy and would like, as a matter
of operating policy, to minimize pipeline inventory and
speed deliveries;

4. many of the operating costs (labor, depreciation, termi-
nal costs) may be fixed and thus minimizing distance
has a marginal effect on reducing costs; or

5. waiting time is the objective, as is the case in the utility
repair application just mentioned.

It is unfortunate that classical models and techniques
have little to say about vehicle routing when stochastic and
dynamic elements are included. This is due in large part to
the inherent difficulties of combining vehicle routing and
congestion models. In particular, including a time element
along with randomness usually destroys the combinatorial
structure required for classical vehicle routing methods.
Similarly, the strong dependencies present in travel times
usually violate the assumptions required to apply tradi-
tional queueing models. Indeed, Psaraftis (1988) points
out that although congestion (queueing) and vehicle rout-
ing theory are both very rich subjects, littie work has been
done to combine them. Recently, a theory of vehicle routing
under congestion has been developed in Bertsimas and van
Ryzin (1990, 1992, 1993) and Bertsimas and Xu (1992). In
this section, we review these developments.

We remark that the scope of our review is strictly lim-
ited to dynamic vehicle routing problems, which is a subset
of a broader family of models called dynamic transportation
models. This broader area includes (we provide just one
reference per area):

¢ dynamic fleet management (Powell 1986);

¢ dynamic traffic assignment (Friesz et al. 1989);

e dynamic air traffic control (Vranas, Bertsimas and
Odoni 1993);

e dynamic shortest path problems (Psaraftis and Tsitsiklis
1993).

7.1. Problem Definition

The problem we investigate, which we call the dynamic
traveling repairman problem (DTRP) is a Euclidean
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model of a dynamic VRP. Demands for service arrive ac-
cording to a renewal process with intensity A and finite
variance to a connected, bounded Euclidean service region
o of area A. Upon arrival, demands assume an indepen-
dent and identically distributed (i.i.d.) location in ¢ ac-
cording to a continuous density f(x) defined over .
Demands are serviced by m identical vehicles that travel at
constant velocity v. At each location, vehicles spend some
time s in on-site service, which is a random variable with
finite first and second moments denoted by § and s, re-
spectively. Successive service times are independent and
identically distributed.

Initially, we shall assume that there are no capacity con-
straints on the vehicles. Later, we consider the case where
there is an upper bound, ¢, on the number of demands
that can be served before a vehicle must return to a desig-
nated depot location.

A policy for routing the vehicles is called stable if the
number of unserved demands in the system is bounded
almost surely for all times ¢. Let A denote the set of stable
policies. If a policy is stable, p = AS/m is the fraction of
time vehicles spend in on-site service. We write T, to indi-
cate the system time of a particular policy u € M. The
DTRP is then defined as the following optimization
problem.

Problem DTRP

}Lnelﬁ T,.

We let T* denote the optimal value in this minimization.
The model can be also extended to handle a mixed objec-
tive that includes costs on both waiting time and the aver-
age distance traveled per demand served. This extension is
discussed next.

7.2. The Uncapacitated Vehicle DTRP

In this subsection, we assume that the vehicles are unca-
pacitated. The principal question we address is how the
optimal system time behaves as a function of the parame-
ters of the problem (p, m, f(x), etc.), how the geometry of
the system affects the performance, when the system is
stable, and what are optimal or near-optimal policies that
are easily implementable.

To address the dependence of the optimal system time
on the demand distribution we distinguish two cases. Un-
der the class of spatially unbiased policies, the system time
of a random demand does not depend on its location,
while if we do not impose this restriction, the class of
policies is called spatially biased. The motivation for con-
sidering this distinction is that it offers insights in the
tradeoff of performance and “fairness.” In the spatially
unbiased case, the average delay experienced by customers
is the same regardless of their location, while in the spa-
tially biased case customer location might affect the expe-
rienced delay. In the spatially unbiased case we create
“fairness” by distributing a higher average delay equally
among customers, while in the spatially biased case we
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achieve better overall performance (smaller delay) at the
expense of creating inequalities among customer delays.
In light traffic (p — 0) the optimal policy is as follows.

Stochastic Median Policy

Solve the m median problem and locate the m-vehicles in
the medians x3, ..., x}, of «. Serve customers in a first-
come, first-serve (FCFS) order, returning to the corre-
sponding median after each service is completed.

Bertsimas and van Ryzin (1990) show that the optimal
expected system time, T, in this case satisfies:

Theorem 16. In light traffic, the m median policy is optimal
and satisfies

LB -

v

T* as p—0.

The principal insight from Theorem 16 is that in light
traffic, the problem is essentially a location problem. In
heavy traffic (p — 1), however, the behavior radically
changes. For the case of m uncapacitated vehicles with
general distribution f(x) the following bounds are derived
in Bertsimas and van Ryzin (1990, 1992).

Theorem 17. The system is stable if and only if p < 1. Under
the class of spatially unbiased policies the optimal system
time satisfies

o AL f3(x) dx)? <T* < BZsp M S a4 f1*(x) dx]?
mivi(1 — p)? h T2 m2v3(1 — p)?

+ o(ﬁﬁ—z) , (10)

where y = 2/3\/m and Brsp is the constant appearing in the
theorem of Beardwood, Halton and Hammersley.

Under the class of spatially biased policies the optimal
system time satisfies

, AlS s f2P(x) dx]? <T* < Bhsp M S f3(x) dx]?
m2v2(1 — p)z = = 92 m2v2(1 _ p)z

+0((—1—_1PW). (11)

The previous results reveal several interesting features
of the problem.

1. The stability condition is independent of the geometry
of the system and, surprisingly, of the speed v(v > 0).

2. Compared with traditional queues in which the system
time behaves like ®(1/1 — p), the system time in the
DTRP grows much faster, like ®(1/(1 — p)?). The rea-
son is the distributed character of the system that gives
rise to spatial queues.

3. The effect of having m vehicles in the system time is
nonlinear. Doubling the number vehicles (but keeping
the same traffic intensity) decreases the system time by
a factor of 4.

4. The theorem characterizes how the demand distribu-
tion influences the system time. The system time under
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the class of spatially unbiased policies is higher than the
system time under the class of spatially biased policies.
Note, however, that in the case of uniform distribution
(f(x) = 1/A) the optimal policy will necessarily be spa-
tially unbiased and the behavior will be ®(A/m?*A(1 —
p)?). In other words, in the case of uniform distribution
there is no advantage of using spatially biased policies.

The lower bounds in Theorem 17 are established for all
stable policies using arguments from geometrical probabil-
ity, queueing theory, and optimization. The upper bounds
are established from analyzing specific policies. Bertsimas
and van Ryzin (1990, 1992) propose several stable policies
w that have the same asymptotic behavior as the bounds of
Theorem 17, i.e., for the uniform case (f(x) = 1/4), for
example:

2 AA

—-—— asp—1,
L Pmi(1 - p)? p

T,~v

where the constant vy, depends only on the policy u. Using
a variety of methods, Bertsimas and van Ryzin (1990) an-
alyze several heuristic policies, among which two are par-
ticularly interesting because of their simplicity and ease of
implementation: Visit the next customer that is given from
the space filling curve heuristic of Platzman and Bartholdi,
and serve the nearest neighbor., The system time under
these two policies behaves for the uniform case like v,
M/?m*(1 — p)?, even for a moderate value of p. The
constants v, for these policies are estimated from simula-
tion. Though not competitive with the best traveling sales-
man policies that will be discussed, these heuristics are
simple to implement and of low complexity, which may
make them particularly attractive in practice.

The provably best policy found until now, which
achieves the upper bound in (10), is one based on batching
arrivals into sets of a fixed size, forming optimal traveling
salesman tours on these sets, and then serving these tours
FCFS as in a GI/G/1 queue and is described as follows.

The Unbiased (U) Traveling Salesman Policy

Let k be a fixed positive integer. From a central point in
the interior of &, subdivide the service region into k
wedges oy, Ay, ..., Ay such that [ flx) dx = 1k, i =1,
2,..., k. (One could do this by “sweeping” the region
from the depot using an arbitrary starting ray until [ s, J(%)
dx = 1/k, continuing the sweep until | s, f(X) dx = 1k,
etc.) Within each subregion, form sets of size n/k (n is a
parameter to be determined). As sets are formed, deposit
them in a queue and service them FCFS with the first
available vehicle by forming a traveling salesman tour on
the set and following it in an arbitrary directions. Optimize
over n.

In the previous policy we needed to select a priori a
parameter n. An adaptive variant of the previous policy
with exactly the same behavior was proposed in Bertsimas
and Xu.

The Unbiased (U) Adaptive Traveling
Salesman Policy

Subdivide the service region into m smaller regions with
the same expected demand. Each vehicle operates inde-
pendently in the smaller region according to the following
policy: Let k be a fixed positive integer. Subdivide the
smaller service region into k subregions s,, ,, ..., s,
such that [y f(x) dx = 1/km, i = 1, 2,..., k. Design a
tour among the subregions. Follow this tour to move from
one subregion to another. Within each subregion, the de-
mands that are present at the time the server enters the
subregion are serviced using a traveling salesman tour.
After the server finishes the current traveling salesman
tour, it will move to the next subregion in the a priori tour
and the process is repeated.

The unbiased traveling salesman policy is a parametric
policy, because it uses parameters k, n that depend on the
data of the problem. In contrast, the policy just described
is adaptive, in the sense that it does not use any parame-
ters and adapts its behavior even when the data of the
problem are changing (the vehicles serve all the customers
that they find in each subregion). As already mentioned, the
system time under both traveling salesman policies (paramet-
ric and adaptive) is the same and is given in the upper
bound of (10). For the case of biased policies the best
policy found to date that achieves the upper bound of (11)
is as follows.

The Biased (B) Traveling Salesman Policy

Approximate the arbitrary density f(x) with a piecewise
constant density. Let sy, od,, ..., &, be a partition of o
such that f(x) = u, for all x € Apj=1,2,...,J Let 4,
denote the area of s4,. For a given positive integer k, par-
tition each subset of, further into k, = >4k regions of
area A/k, = (u?°k)™' (k is a scale factor that will be
chosen arbitrarily large; hence, we assume an integer k,
can be found such that k/k is sufficiently close to u*?4,).
Within each of these subregions, form demands into sets
of size n/k as they arrive. As sets are formed, deposit them
in a queue and service them FCFS with the first available
vehicle as follows:

1. form a traveling salesman tour on the set;

2. connect the tour to the depot through an arbitrary point
in the tour; and

3. follow the resulting tour in an arbitrary direction servic-
ing demands as they are encountered. Optimize over #.

These results imply that compared with the lower
bounds in Theorem 17 the traveling salesman policies are
guaranteed to be within about 80% of the optimal policy in
heavy traffic. We conjecture, however, that these policies
are indeed optimal in heavy traffic, i.e., the factor of 1.8
from optimal is due to slack in the lower bound of
Theorem 17. Preliminary work in Papastavrou and
Chandru (1992) and Bertsimas and Xu (1992) support the
conjecture.
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The traveling salesman policies can be extended to a
mixed objective involving both waiting time and travel
cost. By increasing the size n of the sets that are formed,
travel distance per demand can be reduced at the expense
of increasing the mean system time. Indeed, one can show
that to minimize system time, we essentially maximize the
amount of travel per demand served. Thus, travel cost and
system time are conflicting objectives that can be balanced
by sizing routes in an appropriate way. One could place
costs on both the travel time per demand and the system
time and select a set size that minimizes their sum. The
result would be to form larger sets which improve travel
efficiency at the expense of increased system time.

7.3. Capacitated Dynamic Vehicle Routing

The scenario is the same as before except that the region
o is now serviced by a homogeneous fleet of m vehicles
operating out of a set @ of |%] = m depots, where each
vehicle is restricted to visiting at most g customers before
returning to its respective depot. (The depot locations
need not be distinct.) Let 7 be the expected distance of a
random demand from the closest of the m depots.

To address the question of how the performance of the
optimal policy depends on the system’s parameters
Bertsimas and van Ryzin (1993) prove the following
theorem.

Theorem 18. The system is stable if and only if p + 2A\F/imug
< 1. The optimal system time satisfies:

, A(l +$>2G

YR Yt ;=T
mov (1 p qu)
g Mieg)o
= =
: i - 2T
+o(m), (12)
muq

where G = [[ 4 f"*(x) dx)?, [ 2 (x) dx]? for the spatially
unbiased and spatially biased cases, respectively, and vy is the
same numerical constant from the uncapacitated bound (10).

These capacitated DTRP results provide some intuitively
satisfying insights. Unlike the uncapacitated case the sta-
bility condition p + 2A7/mug < 1 depends on the geometry
of the system through 7 and on the speed v; however, for
g — = the dependence vanishes. The second term in this
stability condition has the interpretation of a radial collec-
tion cost in the sense of Haimovich and Rinnooy Kan. That
is, 2F/v is essentially the average time required to reach a
set of g customers from the nearest depot (the radial cost).
Dividing by g gives the average radial travel time per cus-
tomer, and, hence, multiplying by A we obtain the fraction
of time the server spends in radial travel. The previous
condition says that as long as this fraction plus the fraction
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of time spent on-site is less than one, the system will be
stable. Furthermore, the waiting time grows like the in-
verse square of the stability difference, 1 — p — 2AF/ug,
just as it does in the uncapacitated case. Note that the
average radial distance 7 plays a crucial role in the system’s
behavior in this case. Indeed, Bertsimas and van Ryzin
(1993) show that if one has the option of locating the
depots anywhere within s, then minimizing 7 (i.e., locating
the depot at the medians) is always optimal in heavy traffic.

For g finite, Bertsimas and van Ryzin (1993) construct
policies, u, for which

T, ~ v M<1_§>2
[ Hm2v2(1 _p—rfT;Zv)Z

as p + 2A\F/mqv — 1, and therefore have a constant factor
guarantee from the optimal policy.

The best of these is a policy based on modifying the
traveling salesman policies using the tour partitioning heu-
ristic of Haimovich and Rinnooy Kan. We consider first
the case that all depots coincide.

The Dynamic Tour Partitioning Policy

For some fixed integer £ = 1, divide & into k subregions
iy, Ay, ..., Ay, such that [, fix)dx = 1ki=1,2,...,
k using radial cuts centered at the depot. Within each
region, collect demands into sets Ny, N,, . .. of size n/k as
they arrive and construct optimal tours on these sets. Start-
ing at a randomly selected point in N;, split the tour into
I = [n/q] segments of g demands each (except, perhaps, for
the last segment). Connect the end points of the segments
to the depot to form / tours of at most ¢ demands each. As
sets are formed deposit them in a queue. Service the
queue FCES with the first available vehicle by following
the collection of tours. Optimize over #.

This policy achieves the upper bound in (12). Bertsimas
and van Ryzin (1993) generalize the results of Theorem 18
when there are exactly p vehicles per depot, i.e., m = kp
under the following symmetry assumption. Suppose these
k depots induce Voronoi cells that are identical in shape
and size. Given a collection of points X, a Voronoi cell
around a point O is the set of all points which are closer to
O than to any other point in X; see Preparata and Shamos
(1985). Then, if one applies a p-vehicle policy in each cell,
the resulting system time will be within a constant factor of
the lower bound in heavy traffic. This is due to the fact that
each cell has an arrival rate of Ak and serves an area of
size A/k, each of which has the same mean radial distance
7. Therefore, since each region operates with p vehicles we
have

T~ B*(\k)(Ask)
2(Ak)T\ 2
2,2 _ o _
2p“v (1 p - )
2 -
= AB4 — 3 aSp+£/\—r—>1
2m2v2<1 o 2)\7‘) qgum
P gm
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and, hence, the policy has a constant factor performance
guarantee.

If k is large and the depots are located at the £ median
locations, then Haimovich and Magnanti (1988) show that
the Voronoi cells approach a uniform, hexagonal partition
of A (i.e., a honeycomb pattern). Since this simultaneously
produces uniform Voronoi cells and minimizes 7, one can
show that assigning p vehicles to each of the k medians is
again provably good.

7.4. Reflections

The analysis of dynamic VRPs yields simple expressions for
the system time that provide structural insight into the
effects of traffic intensity, on-site service characteristics,
the number, speed, and capacity of vehicles employed, ser-
vice region size, and the distribution of customer locations.

A reoccurring finding in the analysis is that static vehicle
routing methods when properly adapted can yield optimal
or near-optimal policies for dynamic routing problems with
uniform, stationary demands. This is an encouraging result
on several levels. On a theoretical level, it suggests that
there is, indeed, a connection between static and dynamic
problems at least for models with uniform stationary de-
mands; that is, the DTRP has geometrical characteristics
that are intimately related to the corresponding character-
istics for static VRPs. On a practical level, the results im-
ply that most of the exact algorithms, heuristics, and
insights which have been developed over years of investi-
gation of static VRPs can, in fact, form the basis for effec-
tive policies in dynamic environments.

8. SUMMARY

We attempt in this final section to present a number of
important observations.

1. We believe that there are three primary benefits for
analytical analysis of combinatorial problems in general
and VRPs in particular: a) analytical analysis fosters
new insights into the algorithmic structure required to
solve large-sized problems (see the LBH); b) it makes it
possible to analyze the performance of classical heuris-
tics (see the analysis of the class route first-cluster sec-
ond); and c) it leads to a better understanding of
models that integrate vehicle routing with other issues
important to the firm, such as inventory control. As
pointed by one of the referees, we should qualify this
statement with the observation that, in practice, issues
such as variation in travel times, and crew scheduling
complicate VRPs significantly. We hope, however, that
this deeper understanding will have an impact on vehi-
cle routing practice.

2. Asymptotic analysis leads to interesting, qualitative in-
sights on the structure of the asymptotic optimal solu-
tion of both static and dynamic VRPs. These insights
can be used to develop new algorithms that generate
solutions with a structure similar to the asymptotic
structure. Moreover, preliminary computational results

indicate that even for moderate problem sizes, the lim-
iting behavior is indeed present; see Bramel and
Simchi-Levi (1993) for the performance of the algo-
rithm developed for the VRP with capacity and time
window constraints, Anily and Federgruen (1990) for
the performance of algorithms developed for inventory-
routing problems, and Bertsimas and van Ryzin (1993)
for the dynamic vehicle routing problem.

3. A priori optimization in VRPs is an attractive policy in
the absence of intensive computational power.

4. In dealing with stochasticity in the VRP, new structural
insights are gained by considering the VRP under con-
gestion. These insights can guide the construction of
practical algorithms for VRPs in a dynamic and stochas-
tic environment.
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